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Characterization of sensitivity to finite perturbations

Tobias Letz* and Holger Kantz†

Max-Planck-Institut fu¨r Physik Komplexer Systeme, No¨thnitzer Strasse 38, D-01187 Dresden, Germany
~Received 17 August 1999!

We introduce a scale dependent stability number which describes the response of a dynamical system to
finite size perturbations. By construction, it converges to the maximal Lyapunov exponent in the limit of
infinitesimal perturbations. We discuss different dynamical systems which are linearly stable but unstable in
terms of the finite size analysis. In such a situation typical trajectories can show temporal disorder, which has
its origin in a kind of mixing on the mesoscopic scales.

PACS number~s!: 05.45.2a
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I. INTRODUCTION

Commonly, chaos is defined by sensitive dependence
initial conditions, which, when the solution lives on a com
pact support, is synonymous with the existence of at le
one positive Lyapunov exponent and a positive KS entro
Although it is well known that higher order terms in th
stability analysis in principle might be relevant, in particul
for marginally stable motion, it is common experience th
the results of the linear stability analysis are in agreem
with observations. Thus, motion with a zero or even nega
maximal Lyapunov exponent is considered to be rob
against perturbations and perturbations are known to gro
most algebraically in the former case. On the other ha
systems with a positive Lyapunov exponent display visi
temporal disorder.

In time series analysis@1#, where one tries to obtain th
invariant quantities like Lyapunov exponents, entropies a
dimensions from observed data rather than from numer
solutions of model equations, it is observed that the stab
of motion on the infinitesimal scales generally can be w
obtained from stability on finite length scales, as long
these scales are sufficiently smaller than the overall ex
sion of the attractor. In particular, a positive maxim
Lyapunov exponent is reflected by an exponential growth
distances between nearby trajectories with the correct e
nent@2–4# up to scales delimited by the size of the attract
where naturally saturation has to set in.

We will discuss several systems where the situation
dramatically different. Although the divergence of infinites
mally close trajectories is by definition governed by the d
namics in tangent space, finite size effects due to higher
der terms can enter already on moderate length scales
thus yield different, usually larger, effective divergence ra
than expected from the tangent space dynamics. In par
lar, when the maximal Lyapunov exponent is slightly neg
tive ~or zero!, this can yield the puzzling observation th
nearby trajectories might diverge fast though the soluti
are supposed to be~marginally! stable.
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In order to understand and characterize such beha
quantitatively, we will define ascale dependent stability
number s(«), which in the limit of small scales converge
towards the maximal Lyapunov exponent. Moreover,
show that solutions of such systems with strong nonlin
instability exhibit also temporal disorder and a kind of mi
ing.

II. FINITE SIZE PERTURBATIONS AND STABILITY
NUMBER

In this paper we restrict ourselves to systems with discr
time, which can, e.g., be considered as Poincare´ maps of
flows. Let xWn115 fW(xWn) be a dynamical system in
D-dimensional phase space and«W an initial perturbation.
Then

l5 lim
t→`

lim
u«W u→0

1

t
lnS ~ u fW t~xW0!2 fW t~xW01«W !u

u«W u
D ~1!

5 lim
t→`

1

t
lnU)

n51

t

J~xWn!
«W

u«W u
U , ~2!

whereJ(xWn) is the Jacobian of the mapfW at xWn and f t denotes
the tth iteration off, is the maximal Lyapunov exponent wit
probability one@5#.

This definition cannot be easily generalized to finite p
turbations, e.g., by taking into account higher order terms
«W in Eq. ~2!, since the growth of finite perturbations cann
be characterized by local properties offW at the position of the
unperturbed solution. Motivated by algorithms measuring
divergence of nearby trajectories in time series analysis@3,4#,
we introduce a numerical concept for nonlinear stabil
analysis.

Let uW (xWn) be the unit vector pointing into the local tange
spaceE1(xWn) of the maximal Lyapunov exponent@5#, i.e.,
numerically uW (xWn)5)m51

n J(xWm)«W /u)m51
n J(xWm)«W u for suffi-

ciently largen and almost every«W . We then define the func
tion S(«,t) by

h,
,
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S~«,t !5
1

N (
n51

N

lnS 1

2 (
i 51,2

u fW t~xWn!2 fW t~yW n,i !u D
with uxWn2yW n,6u56«uW ~xWn!, ~3!

where thexWn are distributed according to the natural inva
ant measure, e.g., stem from a long trajectory. For each g
evolution timet we thus average over the distances betw
the position of a reference trajectory at that moment, eme
ing from xWn , and the positions of two neighboring traject
ries started at an initial distance« in the direction of the local
maximal Lyapunov vector. If these trajectories diverge
cording to an exponential law, the logarithm of this avera
yields a local finite time divergence rate multiplied byt.
These local rates are averaged over the whole invariant
@Technical remark: IfyW n,6 lies outside the basin of attractio
it is neglected in the inner sum of Eq.~3! and the normaliza-
tion factor 1

2 is accordingly corrected.#
Following these and the more detailed arguments in@4#,

S(«,t) as a function oft possesses a linear increase, if t
trajectory is chaotic and the initial« is sufficiently small, its
slope being the maximal Lyapunov exponent of the syst
This statement is valid for every system in the limit of i
finitesimal «, but in practice also true for finite« for all
commonly studied chaotic model systems.

We condense this information in thescale dependent sta
bility number s(«) by

s~«!ª
dS~«,t !

dt U
t5tc

for suitabletc . ~4!

Numerically, we will estimate the slopes(«) by st1 ,t2
(«)

5@S(«,t2)2S(«,t1)#/(t22t1) for suitable t1 and t2. The
ambiguity in the choice oftc and t1 , t2, respectively, will
turn out to be irrelevant, as long as we guarantee that at
cal behavior due to too small or too largetc is excluded~see
examples in Sec. III!. In cases where we find a linear in
crease ofS(«,t), s(«) is well defined and independent oftc
for a broad range oftc ~and oft1 andt2). If S(«,t) does not
possess a linear regime, we nevertheless want to charact
its increase by a single number, and we cannot but fixt1 and
t2 arbitrarily. The conclusions to be drawn froms(«) in such
cases will not depend on their precise values. The vague
in the definition circumvents an additional problem in high
dimensional systems: If we do not direct the initial perturb
tions into the most expanding direction~e.g., due to numeri-
cal ease!, the growth of perturbations will undergo a tra
sient, during which the perturbation aligns with the loca
most expanding direction, such that the exponential stre
ing with the maximal exponent will be observed only aft
some timet.0. Moreover, if perturbations grow accordin
to a power law~marginally stable motion!, this leads to finite
slopes fortc50 and zero slope fortc→`.

In Fig. 1 we showS(«,t) for the chaotic circle map
fn115fn1V1k sinfn : As long asS(«,t)&22 we ob-
serve straight line segments, whose slope is approxima
0.186, the average Lyapunov exponent, independent of
initial neighborhood size«. In the limit «→0 one can follow
the linear slope fort→`, and we find exactly the Lyapuno
en
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exponent. For finite«, the linear behavior terminates afte
finite timest, when saturation sets in.

The upper curve of Fig. 2 shows the scale dependent
bility number, derived from the information of Fig. 1. Th
signature is typical of a ‘‘well-behaved’’ chaotic syste
~such as also, e.g., the He´non map, the Ikeda map, the Poin
carémap of the Lorenz system!: Apart from the saturation
effects on scales comparable to the overall size of the att
tor and an overestimation due to second order effects
slightly smaller scales, we see a good agreement betw
s(«) and the Lyapunov exponentl'0.186 ~dotted line!
even for large«.

For quasiperiodic solutions of the circle map@here: k
50.4, V54.685(golden mean )32p], we obtain horizon-
tal lines for S(«,t) and s(«)50 for all « ~Fig. 1!, again in
perfect agreement with the linear stability analysis. Fina
if the maximal Lyapunov exponent is negative~and the so-
lution a periodic orbit!, we faithfully obtain negative slope
which again are identical to the value of the Lyapunov e
ponent.

FIG. 1. S(«,t) for the chaotic circle mapfn115fn1V
1k sinfn with k54.68 andV54.8.

FIG. 2. The scale dependent stability number, numerically
proximated bys2,10(«), for chaotic solutions (k54.68, V54.68)
~obtained from the curves of Fig. 1!, for quasiperiodic solutions
(k50.4, V54.68) and for stable periodic solutions (k50.4, V
50.674p) of the circle map~from top to bottom!. The values of the
maximal Lyapunov exponent 0.186, 0, and20.022 found from the
tangent space dynamics,l5^ lnuf8(xt)u&, agree well.
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Thus the finite scale stability numbers(«) does not only
converge towards the maximal Lyapunov exponent of
system in the limit of«→0 by construction, but additionally
represents its value also on larger scales, if the tangent s
dynamics also governs finite size perturbations.

III. QUASICHAOS: NONLINEAR INSTABILITY
DESPITE LINEAR STABILITY

In this section we will discuss three classes of syste
where the scale dependent stability number gives insight
a kind of temporal disorder without positive Lyapunov e
ponents.

A. Discontinuous maps

The behavior of maps with a large number of discontin
ties can be very different on infinitesimal scales and
scales related to the distance between the discontinuities
us approximate the circle map,

xn115 f c~xn!5xn1V1k sin~xn!, ~5!

by a piecewise linear map ofM pieces, by interpolating lin-
early betweenf c(x5n2p/M ) and f c(x5@n11#2p/M ).
Then, in order to introduce discontinuities, we reflect ea
linear piece at its midpoint. The map thus reads

f ~x!5yn111~x2zn!
yn2yn11

zn112zn
, xP@zn ,zn11#, ~6!

wherezn5n2p/M andyn5 f c(zn). If we consider the case
k,1, this map is one-to-one and it thus cannot have cha
solutions ~no possibility for mixing!. Instead, all solutions
must be quasiperiodic or periodic. In fact, for many values
M, V andk we find, after some transient, periodic motion
short periods and with negative Lyapunov exponents. N
ertheless, one can focus on parametersk and V ~e.g., k
50.4, V54.68) for which a trajectory has not yet locke
into a periodic solution after 20000 iterations. Such orb
create invariant measures which are practically ergodic
the interval@0:2p#. In these cases, the numerical value
the Lyapunov exponent,l5^ lnuf8(xt)u&, is statistically consis-
tent with 0.

The functionsS(«,t) ands2,10(«) ~Fig. 3!, however, dif-
fer strongly from the behavior reflected by Figs. 1 and 2. F
M5500 we see that above a value«u'0.01 all lines are
almost horizontal, reflecting a zero exponent. Below«u , the
situation changes drastically: the average distance incre
very fast and saturates around«u . The divergence rate be
comes lower the smaller« is, and below« l'1026 all lines
are practically horizontal again.

In the range of« where the curvesS(«,t) are no clear
straight line segments before saturation, the precise value
s(«) do depend ont1 and t2 used to estimate the slope o
S(«,t). Nevertheless, as said before, the conclusions to
drawn from it will not depend on precise values. The cur
s2,10(«) well represents the essentials ofS(«,t): There is
marginal stability on the very small scales~in agreement
with l50) and on the large scales, and strong instability
intermediate scales. This instability becomes, during v
short times, extremely large, due to the large slopes of
e
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initial parts ofS(«,t) aroundS(«,0)5 ln «'27. In the scale
dependent stability number this is reflected by the maxim
around«'1024. The maximum value ofs(«) is only im-
plicitly related to properties of the system, more precisely
its discontinuities. When« is large compared to the lengt
scales introduced by the discretization, the increase of
tances is governed again by linear stability analysis, but n
by the one corresponding to the smooth analogue of our m
which in this case is the nonchaotic circle map.

The left part ofs(«), the approach towardss50 for de-
creasing«, can be determined by the following argumen
We have checked that the points of the reference trajec
are almost uniformly distributed inside each interval
length 1/M . Let us consider those points inside this interv
whose«-neighbors@denoted byyn,6 in Eq. ~3!# are located
in one of the two adjacent intervals. The fraction of the
points is 2M«. The average height of the discontinuities
2/M , and, under the approximation that the slopes are alm
the same in both intervals, this is also the distance betw
the image of such a point and the image of its« neighbor.
Thus for «,1/M we find s0,1(«)52M« ln(1/M«). This be-
havior is in fact well represented by the numerical resu
~see Fig. 4!.

The dependence of«u and the location of maximal insta
bility on the number of the discontinuities and thus on t

FIG. 3. Quasichaos in the piecewise linear discontinuous ci
map (M5500): S(«,t) ~upper panel! and s2,10(«) ~lower panel,
continuous curve!. Additional dotted curves in the right panel sho
the dependence on the discretization length scale of the map
~6!, M5125, M5250, M51000, M52000 from right to left.
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2536 PRE 61TOBIAS LETZ AND HOLGER KANTZ
size of the intervals between jumps and their heights is a
shown in Fig. 3~lower panel, dotted curves!: «u}1/M , as
expected from our arguments.

The notion of quasichaosis not just based on the positiv
ity of the scale dependent stability number in some range
length scales, but is also justified from other points of vie
since such dynamics exhibit temporal disorder. In Fig. 5
compare the power spectra of the circle map and its q
sichaotic version, Eq.~5! and Eq.~6!. Whereas the spectrum
of the circle map shows the well known features of quas
eriodic motion, the spectrum of the quasichaotic system
a broad-band background; many peaks disappeared an
remaining peaks are broadened, as it is typical of cha
motion with a strong~quasi!periodic component. Moreover

FIG. 4. s0,1(«) for the piecewise linear discontinuous circle m
(M5500, k50.4, V54.68) ~continuous curve! and the predicted
values~dashed curve!.

FIG. 5. Power spectra of the circle map and its quasicha
counterpart fork50.4 andV54.68.
o
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when plotting, e.g., every 27th data point of a typical traje
tory, we observe clear disorder in the quasichaotic sys
~Fig. 6!.

Since our map is one-dimensional and invertible, th
cannot be mixing and thus no true chaos. Instead, we
very long attractive periodic orbits, preceded by even lon
transients. The basin of attraction is very complicated a
creates a situation which, when seen in a coarse rained
looks like mixing: In contrast to real mixing
limt→` m( f t(A)ùB)5m(A)m(B) is only fulfilled for sub-
setsA and B of the state space with a sufficiently large d
ameter.

The latter aspects are more conveniently studied for
even simpler map, where all slopes of the linear pieces
identical to unity. We will present detailed results about t
properties of such a system, a Bernoulli map with rand
additional discontinuities, in a separate paper@6#.

B. A coupled map lattice

Politi et al. @7# studied a spatially extended system sho
ing strong spatiotemporal disorder during some trans
whose length grows exponentially with system size. T
puzzling observation was, however, that even during this
ordered transient, the maximal Lyapunov exponent is stric
negative.

The system, a coupled map lattice, reads

xn11
i 5~122s! f ~xn

i !1s„f ~xn
i 11!1 f ~xn

i 21!…,

f ~x!5H bx, 0,x,1/b,

a1c~x21/b!, 1/b<x,1.
~7!

For a50.07, b52.7, c50.1 the uncoupled map possesse
stable period-three orbit with elements$0.121,0.328,0.887%,
which is also the most probable asymptotic solution of
CML with coupling s51/3. Through the strong contractio
of f on the right interval, even the Lyapunov exponent o
disordered transient is negative. Its value is relatively rob
against changes of the initial condition, and, due to the fl
ness of the Lyapunov spectrum, is almost independent of
system size. In Fig. 7 we show theS(«,t) curves for N
525 maps and thes(«) curves for several systems sizes,

ic

FIG. 6. Time series of the circle map (3) and its quasichaotic
counterpart~1!, plotting only every 27th value.
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obtained on trajectories of length 1000 which were fully
the disordered transient state. In the limit of infinitesim
perturbations, we find a very good agreement with the
merically determined maximal Lyapunov exponentsl1
'20.123 ands(«) only if tc is very large. For numerica
ease we have chosen random initial perturbations. There
we observe finite time deviations in Fig. 7, because of
small value ofl12l2. However, what is more importan
we see that perturbations which are larger than about 0
grow with time. We thus conjecture that the instability whi
leads to the spatiotemporal disorder is this sensitivity to fin
size perturbations, which are permanently acting onto e
individual map through the coupling to its neighbors. As w
saw in the modified circle map, this kind of instability is we
able to create motion which looks disordered.

C. Polygonal billiards

Billiards have been extensively studied in connection w
the quantization of chaotic systems, but here we will disc
the classical motion of a free particle confined to some
gion of space by ideally reflecting boundaries. The equa
of motion is thus trivial inside the billiard and is governed
the simple reflection law when the particle hits the bounda
The natural time discrete dynamical system is given by
map from one reflection point to the next one. We will stu
regular polygonal billiards inscribed in the unit circle. Th

FIG. 7. S(«,t) for the 25-dim coupled map lattice~upper panel!
ands2,8(«) for 20-dim, 25-dim, 30-dim~lower panel, from bottom
to top!.
l
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e
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coordinates we use are thus (f i ,a i), wheref i is the angle
of radius vector through the reflection point, measured w
respect to the horizontal, anda i is the angle of the reflected
particle, also measured with respect to the horizontal~see
Fig. 8!.

Billiards with boundaries formed by straight lines we
studied thoroughly and termed quasi-integrable, almost in
grable, etc., since infinitesimally close trajectories can o
diverge linearly in time and solutions are thus margina
stable@8#. Despite this fact, in@9# it was observed that typi-
cal solutions exhibit temporal disorder, and the comparis
of nearby trajectories allowed them to measure a posi
Lyapunov exponent even for regular polygons, which a
proximate the integrable circular billiard. We therefore co
duct our nonlinear stability analysis for these systems. In F
9 we show the scale dependent stability numbers obtaine
numerical simulation of billiards with different edge num
bers. On the large scales, the behavior of a polygonal billi
is indistinguishable from a circular billiard. Trajectories d
verge linearly in time, i.e., the motion is marginally stab
but algebraically unstable, in contrast to the circle map. T
here thetc of Eq. ~2! should be large in order to find th
correct Lyapunov exponentl50. Instead, we translate thi
instability into the stability numbers(«) through the slope of
the law S(«,t)5 log(at1b), where a and b are constants
given by the initial separation of the trajectories and the r
of the linear divergence of the trajectories, on the appropr
time interval. A very similar result also holds in the limit o
very small«. Here, the perturbations are small compared
the edge lengths of the polygons, and again the perturbat
increase linearly with the number of reflections. Howev
when compared to the circular case, here only half of
perturbations leads to this linear instability due to the f
that a mere translation of the reflection point has low pro
ability to lead to a divergence of the trajectories in the fi
time step. One can compute theS(«,t) curves for both this
limit and the circular billiard analytically and derive the va
ues of s2,3(«), ln@(A851A61)/2#2 ln@(A412A25)/2# for
the circular billiard, which is indicated in Fig. 9. On inte

FIG. 8. A hexagonal billiard with a short part of a trajectory a
our notation of the coordinates.
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2538 PRE 61TOBIAS LETZ AND HOLGER KANTZ
mediate length scales, however, one observes a strong i
bility, which occurs when the initial perturbation is of th
order of the size of the edge lengths. Nonlinear stabi
analysis thus reveals that this marginally stable sys
whose macroscopic approximation is also marginally sta
possesses sensitivity to perturbations of the order of ma
tude of 1/N, whereN is the number of edges. We have th
clear evidence that the positive Lyapunov exponent de
mined in Ref.@9# is a misinterpretation, perhaps because
an unsuitable choice of the range of length scales in wh
the instability was measured.

FIG. 9. The functionS(«,t) ~upper panel! and the scale depen
dent stability numbers2,3(«) ~lower panel! for regular polygonal
billiards with edge numbersN5500, 2000, and 8000~curves from
right to left!.
s
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IV. SUMMARY

We have introduced the concept of stability with resp
to finite size perturbations, condensed in the quantitys(«),
the scale dependent stability number, which in the limit«
→0 converges towards the maximal Lyapunov expone
We have demonstrated that for certain classes of dynam
systems this concept provides a more detailed descriptio
the system’s response to perturbations than the linear st
ity analysis, including the possibility for strong instabilit
despite zero or negative Lyapunov exponents. Moreo
there is evidence, that such a kind of instability can lead
solutions which are aperiodic and show temporal disorde

Quasichaos seems to be common to systems with dis
tinuities, although we have also found this behavior in co
tinuous 1D maps with large second derivatives~not shown in
this paper!. Since in technical environments, in particular
control systems, piecewise linear discontinuous functions
ubiquitous, we expect this phenomenon to be of considera
relevance. We discussed polygonal billiards as a physic
motivated system of this type.

The notion of pseudochaos has gained recent interes
an article of Chirikov and Vivaldi@10#. Starting from the
relationship between quantum and classical dynamics, t
discuss systems where exponential instability on infin
times is prohibited by the discreteness of the state space
view of this it is puzzling, that in the systems of our pap
the discreteness of the dynamics introduced by the disco
nuities gives rise to instabilities, even if the correspond
smooth dynamics on the infinitesimal scales and in the m
roscopic limits are marginally stable.

Recently, in two very interesting papers a finite si
Lyapunov exponent was introduced@11,12#. This exponent
was designed to investigate chaotic systems with separa
of time and length scales and differs from this work in bo
scope and method. In particular, since it relies on error d
bling times, it cannot be used to determine zero or nega
expansion rates.
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