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Characterization of sensitivity to finite perturbations

Tobias Let? and Holger Kantz
Max-Planck-Institut fu Physik Komplexer Systeme, tNoitzer Strasse 38, D-01187 Dresden, Germany
(Received 17 August 1999

We introduce a scale dependent stability number which describes the response of a dynamical system to
finite size perturbations. By construction, it converges to the maximal Lyapunov exponent in the limit of
infinitesimal perturbations. We discuss different dynamical systems which are linearly stable but unstable in
terms of the finite size analysis. In such a situation typical trajectories can show temporal disorder, which has
its origin in a kind of mixing on the mesoscopic scales.

PACS numbdps): 05.45-a

[. INTRODUCTION In order to understand and characterize such behavior
quantitatively, we will define ascale dependent stability
Commonly, chaos is defined by sensitive dependence onumber §e), which in the limit of small scales converges
initial conditions, which, when the solution lives on a com- towards the maximal Lyapunov exponent. Moreover, we
pact support, is synonymous with the existence of at leasghow that solutions of such systems with strong nonlinear
one positive Lyapunov exponent and a positive KS entropyinstabi”ty exhibit also temporal disorder and a kind of mix-
Although it is well known that higher order terms in the Ing.
stability analysis in principle might be relevant, in particular
for marginally stable motion, it is common experience that
the results of the linear stability analysis are in agreement II. FINITE SIZE PERTURBATIONS AND STABILITY
with observations. Thus, motion with a zero or even negative NUMBER

maximal Lyapunov exponent is considered to be robust |, this paper we restrict ourselves to systems with discrete

against perturbations and perturbations are known to grow fme which can e.g., be considered as Poinaaeps of

most algebraically in the former case. On the other handflows Let x —F(i) be a dvnamical svstem in a
systems with a positive Lyapunov exponent display visible ' N1 0 y y

temporal disorder. D-dimensional phase space aedan initial perturbation.
In time series analysigl], where one tries to obtain the Then
invariant quantities like Lyapunov exponents, entropies and

dimensions from observed data rather than from numerical 2 - P
((If (o)~ f'(Xo+¢)]

2]

solutions of model equations, it is observed that the stability A=lim lim iln
of motion on the infinitesimal scales generally can be well t=% (3]0
obtained from stability on finite length scales, as long as
these scales are sufficiently smaller than the overall exten-
sion of the attractor. In particular, a positive maximal 1
Lyapunov exponent is reflected by an exponential growth of =lim ?In
distances between nearby trajectories with the correct expo- t—eo
nent[2—4] up to scales delimited by the size of the attractor,
where naturally saturation has to set in. - ) .. .
We will discuss several systems where the situation idvhereJ(x,) is the Jacobian of the mafpat x,, andf* denotes
dramatically different. Although the divergence of infinitesi- thetth iteration off, is the maximal Lyapunov exponent with
mally close trajectories is by definition governed by the dy-Probability one[5]. _ . o
namics in tangent space, finite size effects due to higher or- This definition cannot be easily generalized to finite per-
der terms can enter already on moderate length scales aglld{batlons, e.g., by taking into account higher order terms in
thus yield different, usually larger, effective divergence rates: in Eq. (2), since the growth of finite perturbations cannot
than expected from the tangent space dynamics. In particle characterized by local propertiesfddt the position of the
lar, when the maximal Lyapunov exponent is slightly nega-unperturbed solution. Motivated by algorithms measuring the
tive (or zerg, this can yield the puzzling observation that divergence of nearby trajectories in time series ana[y,

nearby trajectories might diverge fast though the solutiongve introduce a numerical concept for nonlinear stability
are supposed to bnarginally stable. analysis.

Let J()Zn) be the unit vector pointing into the local tangent

*Also at the Department of Energy and Semiconductor Researchs,pacel_zl(xn) of the maximal Lyapunov exponef#], i.e.,

Faculty of Physics, University of Oldenburg, D-26111 Oldenburg, "umerically u(Xp) =TIq- 1‘](Xm)*°:/|Hnm:1~](Xm)8| for suffi-
Germany. Electronic address: letz@uni-oldenburg.de ciently largen and almost every. We then define the func-
TElectronic address: kantz@mpipks-dresden.mpg.de tion S(e,t) by

()

>

t
nf:[1 I%) —|, )

2]

1063-651X/2000/6(B)/25336)/$15.00 PRE 61 2533 ©2000 The American Physical Society



2534 TOBIAS LETZ AND HOLGER KANTZ PRE 61

1 N
S(e,t)= Ng

L\.3|H

PO = (Vi)
With [X,—Yn | = *eU(Xy), (3) 5

where thex,, are distributed according to the natural invari-

S(e, t)

ant measure, e.g., stem from a long trajectory. For each given -10
evolution timet we thus average over the distances between
the position of a reference trajectory at that moment, emerg- 15

ing from in, and the positions of two neighboring trajecto-
ries started at an initial distaneein the direction of the local
max!mal Lyapunov vector. If these trajectories d_|verge ac- 0 20 20 60 80 100
cording to an exponential law, the logarithm of this average t

yields a local finite time divergence rate multiplied hy

These local rates are averaged over the whole invariant set. FIG- 1. S(e,t) for the chaotic circle mapgn.;=¢n+Q

[Technical remark: Iﬁ/mi lies outside the basin of attraction ksind, with k=4.68 and2=4.8.

it is neglected in the inner sum of E) and the normaliza-

tion factor 3 is accordingly corrected. exponent. For finites, the linear behavior terminates after
Following these and the more detailed argumentip  finite timest, when saturation sets in.

S(e,t) as a function oft possesses a linear increase, if the The upper curve of Fig. 2 shows the scale dependent sta-

trajectory is chaotic and the initial is sufficiently small, its ~ bility number, derived from the information of Fig. 1. The

slope being the maximal Lyapunov exponent of the systerrﬁ'gnature is typical of a “well-behaved” chaotic system

This statement is valid for every system in the limit of in- (Such as also, e.g., the hen map, the lkeda map, the Poin-

finitesimal &, but in practice also true for finite for all ~ caremap of the Lorenz systemApart from the saturation

commonly studied chaotic model systems. effects on scales comparable to the overall size of the attrac-
We condense this information in tiseale dependent sta- tor and an overestimation due to second order effects on
bility number &) by slightly smaller scales, we see a good agreement between
s(e) and the Lyapunov exponerX=0.186 (dotted ling
dS(e,t) even for largee.
s(e)=—q for suitablet, . (4) For quasiperiodic solutions of the circle mépere: k
=t =0.4, ) =4.68=(golden mean X 2], we obtain horizon-

tal lines forS(e,t) ands(e)=0 for all ¢ (Fig. 1), again in
Numerically, we will estimate the slops(e) by s ,(¢)  perfect agreement with the linear stability analysis. Finally,
=[S(e,t,) — S(e,t;)]/(t,—t;) for suitablet; andt,. The if the maximal Lyapunov exponent is negati@nd the so-
ambiguity in the choice of, andt,, t,, respectively, will lution a periodic orbit, we faithfully obtain negative slopes
turn out to be irrelevant, as long as we guarantee that atypwhich again are identical to the value of the Lyapunov ex-
cal behavior due to too small or too largeis excludedsee  ponent.
examples in Sec. Il In cases where we find a linear in-

crease 0fS(e,t), s(¢) is well defined and independent &f 0.25

for a broad range df;, (and oft; andt,). If S(e,t) does not

possess a linear regime, we nevertheless want to characterize 02F e
its increase by a single number, and we cannot but; fand :

t, arbitrarily. The conclusions to be drawn fraste) in such 0.15 }

cases will not depend on their precise values. The vaguenes
in the definition circumvents an additional problem in higher

dimensional systems: If we do not direct the initial perturba-

tions into the most expanding directide.g., due to numeri- 0.05 }
cal easg the growth of perturbations will undergo a tran-

sient, during which the perturbation aligns with the locally 0
most expanding direction, such that the exponential stretch-

ing with the maximal exponent will be observed only after -0.05
some timet>0. Moreover, if perturbations grow according 10°8 10© 104 1072
to a power law(marginally stable motion this leads to finite €

slopes TOHC:O and zero slope for,— . . FIG. 2. The scale dependent stability number, numerically ap-

In Fig. 1 we showS(e,t) for the chaotic circle map, proximated bys, (), for chaotic solutions K=4.68, 0= 4.68)
$ni1= Pat Q+ksing,: As long asS(e,t)=—2 we ob-  (gptained from the curves of Fig.),1for quasiperiodic solutions
serve straight line segments, whose slope is approximatelk—0.4, 0=4.68) and for stable periodic solution&=0.4, Q
0.186, the average Lyapunov exponent, independent of the 0.674r) of the circle magfrom top to botton). The values of the
initial neighborhood size. In the limite —0 one can follow  maximal Lyapunov exponent 0.186, 0, and.022 found from the
the linear slope fot—o, and we find exactly the Lyapunov tangent space dynamics={In|f’(x)|), agree well.
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Thus the finite scale stability numbsfe) does not only 0
converge towards the maximal Lyapunov exponent of the
system in the limit ole— 0 by construction, but additionally
represents its value also on larger scales, if the tangent spaci
dynamics also governs finite size perturbations.

Ill. QUASICHAOS: NONLINEAR INSTABILITY
DESPITE LINEAR STABILITY

S(e, t)

In this section we will discuss three classes of systems,
where the scale dependent stability number gives insight into
a kind of temporal disorder without positive Lyapunov ex-
ponents. 25

0 20 40 60 80 100
A. Discontinuous maps
0.2

The behavior of maps with a large number of discontinui-
ties can be very different on infinitesimal scales and on
scales related to the distance between the discontinuities. Let 0.15
us approximate the circle map,

. 0.1}
Xn+1=Fe(Xn) =Xp+Q +ksin(xp), )

$p,10(€)

by a piecewise linear map &l pieces, by interpolating lin- 0.05 |
early betweenf . (x=n27/M) and f.(x=[n+1]27/M).
Then, in order to introduce discontinuities, we reflect each ot

linear piece at its midpoint. The map thus reads

Yn~¥nt1 0.0 10 » " " 2
f(X)=Yns1+t(X—=2)) ———, Xx€[z1,Z,:1], (6) 10° 10° 10 10 10 1
Zn+17 Zp €

wherez,=n2x/M andy,=f.(z,). If we consider the case FIG. 3. Quasichaos in the piecewise linear discontinuous circle
k<1, this map is one-to-one and it thus cannot have chaotigap (M =500): S(e,t) (upper paneglands,ide) (lower panel,
solutions (no possibility for mixing. Instead, all solutions continuous curve Additional dotted curves in the right panel show
must be quasiperiodic or periodic. In fact, for many values ofthe dependence on the discretization length scale of the map Eq.
M, Q andk we find, after some transient, periodic motion of (6); M=125, M =250, M =1000, M =2000 from right to left.
short periods and with negative Lyapunov exponents. Nev-
ertheless, one can focus on parameterand Q) (e.g., k initial parts ofS(e,t) aroundS(e,0)=Ine~—7. In the scale
=0.4, 01=4.68) for which a trajectory has not yet locked dependent stability number this is reflected by the maximum
into a periodic solution after 20000 iterations. Such orbitsarounde~10"4. The maximum value 0§(¢g) is only im-
create invariant measures which are practically ergodic oplicitly related to properties of the system, more precisely, to
the interval[0:27]. In these cases, the numerical value ofits discontinuities. Wher is large compared to the length
the Lyapunov exponenk,=(In|f'(x))|), is statistically consis- scales introduced by the discretization, the increase of dis-
tent with 0. tances is governed again by linear stability analysis, but now

The functionsS(e,t) ands; 14 ¢) (Fig. 3), however, dif- by the one corresponding to the smooth analogue of our map
fer strongly from the behavior reflected by Figs. 1 and 2. Fowhich in this case is the nonchaotic circle map.
M =500 we see that above a valgg~0.01 all lines are The left part ofs(¢), the approach towards=0 for de-
almost horizontal, reflecting a zero exponent. Belgyy the  creasinge, can be determined by the following arguments:
situation changes drastically: the average distance increasége have checked that the points of the reference trajectory
very fast and saturates aroung. The divergence rate be- are almost uniformly distributed inside each interval of
comes lower the smaller is, and belows;~10 ° all lines  length 1M. Let us consider those points inside this interval,
are practically horizontal again. whosee-neighborgdenoted byy, .. in Eq. (3)] are located

In the range ofe where the curve$(e,t) are no clear in one of the two adjacent intervals. The fraction of these
straight line segments before saturation, the precise values pbints is 2Me. The average height of the discontinuities is
s(e) do depend ort; andt, used to estimate the slope of 2/M, and, under the approximation that the slopes are almost
S(e,t). Nevertheless, as said before, the conclusions to bthe same in both intervals, this is also the distance between
drawn from it will not depend on precise values. The curvethe image of such a point and the image ofdtsieighbor.
Sp1de) well represents the essentials 8fe,t): There is  Thus fore<1/M we find sp,(¢) =2Me In(1/Me). This be-
marginal stability on the very small scalém agreement havior is in fact well represented by the numerical results
with A=0) and on the large scales, and strong instability on(see Fig. 4.
intermediate scales. This instability becomes, during very The dependence af, and the location of maximal insta-
short times, extremely large, due to the large slopes of theility on the number of the discontinuities and thus on the
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FIG. 4. s54(¢) for the piecewise linear discontinuous circle map  FIG. 6. Time series of the circle map<( and its quasichaotic
(M=500, k=0.4, (1=4.68) (continuous curveand the predicted counterpar(+), plotting only every 27th value.
values(dashed curve
when plotting, e.g., every 27th data point of a typical trajec-
size of the intervals between jumps and their heights is alstory, we observe clear disorder in the quasichaotic system
shown in Fig. 3(lower panel, dotted curvise «1/M, as  (Fig. 6).
expected from our arguments. Since our map is one-dimensional and invertible, there
The notion of quashaosis not just based on the positiv- cannot be mixing and thus no true chaos. Instead, we find
ity of the scale dependent stability number in some range overy long attractive periodic orbits, preceded by even longer
length scales, but is also justified from other points of view,transients. The basin of attraction is very complicated and
since such dynamics exhibit temporal disorder. In Fig. 5 wecreates a situation which, when seen in a coarse rained way,
compare the power spectra of the circle map and its qudooks like mixing: In contrast to real mixing,
sichaotic version, Eq5) and Eq.(6). Whereas the spectrum lim,_.. u(f'(A)NB)=u(A)«(B) is only fulfilled for sub-
of the circle map shows the well known features of quasipsetsA andB of the state space with a sufficiently large di-
eriodic motion, the spectrum of the quasichaotic system haameter.
a broad-band background; many peaks disappeared and theThe latter aspects are more conveniently studied for an
remaining peaks are broadened, as it is typical of chaotieven simpler map, where all slopes of the linear pieces are
motion with a strongquasjperiodic component. Moreover, identical to unity. We will present detailed results about the
properties of such a system, a Bernoulli map with random
10000 . . . . additional discontinuities, in a separate paj@r

1000

100 B. A coupled map lattice

Politi et al.[7] studied a spatially extended system show-
ing strong spatiotemporal disorder during some transient
whose length grows exponentially with system size. The

, puzzling observation was, however, that even during this dis-
SRR ordered transient, the maximal Lyapunov exponent is strictly
0.001 | C [ negative.

- i NIREN WRTRN The system, a coupled map lattice, reads

0.1 02 0.3 0.4 05 . . . -
frequency Xns1=(1=20)F(x) + o (F O H +F 0 ),

10 1

1

power

0.1
Rt L SR A TR R (A UL A

0.01

0.0001
0

10000
bx, 0<x<1/b,

atc(x—1hb), 1b=x<1.

1000

f(x)= ()

Fora=0.07,b=2.7,c=0.1 the uncoupled map possesses a
stable period-three orbit with elemer3.121,0.328,0.887
which is also the most probable asymptotic solution of the

power

0.01 CML with coupling o= 1/3. Through the strong contraction
0.001 } ; of f on the right interval, even the Lyapunov exponent of a
0.0001 . X , , disordered transient is negative. Its value is relatively robust

0 0.1 02 03 04 05 against changes of the initial condition, and, due to the flat-

f . .
reauency ness of the Lyapunov spectrum, is almost independent of the

FIG. 5. Power spectra of the circle map and its quasichaotiSystem size. In Fig. 7 we show tHg&(e,t) curves forN
counterpart folkk=0.4 and() =4.68. =25 maps and the(e) curves for several systems sizes, all
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’ our notation of the coordinates.
Z 005}
2
& ot coordinates we use are thug;(«;), where¢, is the angle
005 } of radius vector through the reflection point, measured with
01 respect to the horizontal, ang is the angle of the reflected
R | particle, also measured with respect to the horizofdak
-0.15 Fig. 8).
02 Billiards with boundaries formed by straight lines were

108 10 10 102 1 studied thorou_ghly _an_d_terr_ned quasi-integ_rablez almost inte-

)5 grable, etc., since infinitesimally close trajectories can only

. ) diverge linearly in time and solutions are thus marginally

FIG. 7. (e,t) for the 25-dim coupled map lattideipper panel  staple[8]. Despite this fact, if9] it was observed that typi-

ands; g(e) for 20-dim, 25-dim, 30-din(lower panel, from bottom 5| sojutions exhibit temporal disorder, and the comparison
to top). of nearby trajectories allowed them to measure a positive
. . . . . Lyapunov exponent even for regular polygons, which ap-
obtained on trajectories of length 1000 which were fully in p)r/ofimate thepintegrable circular gbiIIiart!io. Vi//g therefore cor?—

the dlsorQered transient state. In the fimit of mﬂmtesmalduct our nonlinear stability analysis for these systems. In Fig.
pertgrbatlons, we.flnd a very good agreement with the U9 we show the scale dependent stability numbers obtained by
merically - determined ”.‘ax'”.‘a' Lyapunov_exponemts o, merical simulation of billiards with different edge num-
~—0.123 ands(e) only if t; is very large. Fo_r numerical bers. On the large scales, the behavior of a polygonal billiard
ease we have chosen random initial perturbations. Thereforig indistinguishable from a circular billiard. Trajectories di-

we observe finite time deviations in F'g' ’, beqause of th erge linearly in time, i.e., the motion is marginally stable
small value Of)\l_hz'. Howev_er, what is more important, ut algebraically unstable, in contrast to the circle map. Thus
we see th"?‘t perturbations Wh'Ch are Iarger_ ‘ha”.f?‘b"“t .0'0 ere thet, of Eq. (2) should be large in order to find the
{eads 10 the spatiotemporal isorder f this sensiiy o fnf °TECk LYapunov exponent=0. Instead, we uansiate this
<o perturbafions thi)ch are permanently acting g’mo eachrlstabinty into the stability numbes(e) through the slope of
individual map thrc’)ugh the coupling to its neighbors. As we 1 law S(S’t.) .zllog(at+b)., where a an'd b are constants
. o : 2 . YR given by the initial separation of the trajectories and the rate
saw in the modified circle map, this kind of instability is well : . . : .
able to create motion which looks disordered. Qf thg linear dlvergenc_e (_)f the trajectories, on _the appropriate
time interval. A very similar result also holds in the limit of
. very smalle. Here, the perturbations are small compared to
C. Polygonal billiards the edge lengths of the polygons, and again the perturbations
Billiards have been extensively studied in connection withincrease linearly with the number of reflections. However,
the guantization of chaotic systems, but here we will discussvhen compared to the circular case, here only half of the
the classical motion of a free particle confined to some reperturbations leads to this linear instability due to the fact
gion of space by ideally reflecting boundaries. The equatioithat a mere translation of the reflection point has low prob-
of motion is thus trivial inside the billiard and is governed by ability to lead to a divergence of the trajectories in the first
the simple reflection law when the particle hits the boundarytime step. One can compute tB¢e,t) curves for both this
The natural time discrete dynamical system is given by thdimit and the circular billiard analytically and derive the val-
map from one reflection point to the next one. We will studyues of s, 4(¢), In[(\/85+ \61)/2]—In[(41—25)/2] for
regular polygonal billiards inscribed in the unit circle. The the circular billiard, which is indicated in Fig. 9. On inter-
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IV. SUMMARY

We have introduced the concept of stability with respect
to finite size perturbations, condensed in the quardfg),
the scale dependent stability number, which in the limit
—0 converges towards the maximal Lyapunov exponent.
We have demonstrated that for certain classes of dynamical
systems this concept provides a more detailed description of
the system’s response to perturbations than the linear stabil-
-15 ity analysis, including the possibility for strong instability
despite zero or negative Lyapunov exponents. Moreover,
. . . there is evidence, that such a kind of instability can lead to
0 5 10 15 20 solutions which are aperiodic and show temporal disorder.
t Quasichaos seems to be common to systems with discon-
tinuities, although we have also found this behavior in con-
1.2 v v ' v tinuous 1D maps with large second derivativest shown in
this papey. Since in technical environments, in particular in
Tr l control systems, piecewise linear discontinuous functions are
ubiquitous, we expect this phenomenon to be of considerable
relevance. We discussed polygonal billiards as a physically
motivated system of this type.
The notion of pseudochaos has gained recent interest in
0.4 " an article of Chirikov and Vivald{10]. Starting from the
' L2 relationship between quantum and classical dynamics, they
o2l ) discuss systems where exponential instability on infinite
times is prohibited by the discreteness of the state space. In
0 . . . . view of this it is puzzling, that in the systems of our paper
107 1078 1073 1071 the discreteness of the dynamics introduced by the disconti-
nuities gives rise to instabilities, even if the corresponding
smooth dynamics on the infinitesimal scales and in the mac-
FIG. 9. The functiorS(e,t) (upper paneland the scale depen- roscopic limits are marginally stable.

S(e,t)

08 F

0.6 |

S5 3(€)

€

dent stability numbes; &) (lower panel for regular polygonal Recently, in two very interesting papers a finite size
right to lef9. was designed to investigate chaotic systems with separation

) ~of time and length scales and differs from this work in both
mediate length scales, however, one observes a strong insi&ope and method. In particular, since it relies on error dou-

bility, which occurs when the initial perturbation is of the pling times, it cannot be used to determine zero or negative
order of the size of the edge lengths. Nonlinear stabilityexpansion rates.

analysis thus reveals that this marginally stable system

whose macroscopic approximation is also marginally stable

possesses sensitivity to perturbations of the order of magni- ACKNOWLEDGMENTS
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